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Mathematical modeling & design of worm 
and worm gear pair for determining the 

surface stress acting on the tooth of worm 
and worm gear for plug Valve application 

Yuvraj B. Jadhava, Abhijeet P. Shahb 

Abstract- Gears are one of the most important components in mechanical power transmission system. The bending stress 

and contact stresses of gear tooth is regarded as one of the key contributor for the failure of the gear in the gear set. Thus the 

analysis for these stresses has become essential for minimizing the chance of failure and optimized design of the gear. A 

worm gear, used in many industrial applications, can provide substantially increasing output torque due to its high gear ratio. 

It occupies small space due to its compactness. These advantages are very much appealing to automotive manufacturers in 

particular, as they are moving from the Hydraulic Power Steering to the Electric Power Steering system to provide assistant 

torque to the driver. The worm gear has great potential application in actuation of various types of valves, in various 

machineries and instruments.. This paper focuses on design of worm and worm gear, developing mathematical model of 

gear. This paper gives in detail design procedure for the worm and worm gear in plug valve application. The mathematical 

model of worm gear in plug valve application is developed to determine the Surface stresses acting on the tooth gear. The 

expression is obtained by using the maximum-shear-stress distribution in order to know the maximum-shear-stress value. 

The obtained results in this paper provides significant information for predicting the static and dynamic performance of worm 

gear pairs. 

Keywords:Worm gear; Plug valve; Surface stress; gear design; Hertzian contact stress; Flamant generalized stress 

equation 

——————————      —————————— 

1. INTRODUCTION 

A worm gear is widely used in many industrial 
applications, can provide substantially increasing 
output torque due to its high gear ratio. It occupies 
small space due to its compactness. These advantages 
are very appealing to automotive manufacturers in 
particular, as they are moving from the HPS to the EPS 
system to provide assistant torque to the driver. Plug 
valves are valves with cylindrical or conically tapered 
"plugs" which can be rotated inside the valve body to 
control flow through the valve. The plugs in plug 
valves have one or more hollow passageways going 
sideways through the plug, so that fluid can flow  
 

 
 
through the plug when the valve is open.Use of worm 
& worm gear pair for plug valve application provide a 
considerable mechanical advantage so that a given 
applied force must be able to overcome a 
comparatively high resisting force, which enhance the 
plug valve actuation, and reduce the human work for 
actuation. 

This paper presents a design & mathematical model 
of worm gear in plug valve is to be developed to 
determine the surface stresses acting on the tooth gear. 
The new expression is obtained by using the 
maximum-shear-stress distribution in order to know 
the maximum-shear-stress value. 
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Table 1.Strength Rating Factors 

 

 

2. DESIGN OF WORM & WORM WHEEL 

By using the design procedure of worm and worm  
 

gear we find out different values of gears 
parameters.  

Which shown in table no. 1.

2.1. MATERIAL SELECTION. 

Worm Material 

10C4, 14C4 (Case Hardened steel) 

 

Sut = 980 N/𝑚𝑚2 

 

BHN = 255 

 

𝜍allowable = 326.66 N/ 𝑚𝑚2 

Worm Wheel Material 

ASTM- A535/88-55-06 (Ductile iron) 

 

Sut = 275 N/mm2 

 

BHN = 255 

 

σ𝑏allowable  = 91.66 N/ 𝑚𝑚2 

2.2. STRENGTH OF WORM GEAR TEETH. 

We know that for 30 involute teeth from Lewis factor 

(y ′ ) : 

y′ = 0.358 

 

Check for Tangential Load Transmitted (FT) 

FT = 𝜍b× Cv× b× π×m× y ′= 17391.44 N 

Power transmitted due to tangential load (PT) 

Parameters Values Parameters values Parameters Values 

Velocity ratio (V.R.) 5 Diametral Quotient (q) 10 Clearance (𝐶) 0.8633𝑚𝑚 

Number of starts on worm (Z2) 6 Centre distance (a) 100 mm Deddendum (𝑓1) 49 mm 

Normal pressure angle (ψr) 25 
Pitch circle diameter of 

worm (𝐷1) 
50mm. 

Pitch circle 

diameter of worm 

wheel (𝐷2) 

150𝑚𝑚 

Teeth on Worm Wheel(Z1) 30 
Outside diameter of 

worm (𝐷𝑎1) 
60mm 

Throat diameter of 

worm wheel (𝐷𝑎2) 
157.26 mm 

Lead Angle of Worm(⋋) 30.31° 
Root diameter of worm. 

(𝐷𝑓1) 
41mm. 

Root diameter of 

worm wheel (𝐷𝑓2) 
141.72 mm 

Helix Angle of Worm Wheel (𝜑) 30.31° Axial pitch of worm (𝑃𝑥) 15.70mm Face Width (b) 36.5 mm 

Helix Angle of Worm (𝛾) 59.69° Addendum (𝑎1) 5mm Lead of Worm (L) 15.70 mm IJSER
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  PT = 
F× V

1000
=5.04 kW  

Since this is more than the power to be transmitted, 
DESIGN IS SAFE 

 Check for Dynamic Load (FD) 

FD = 
F𝑡

C.V
 = 18813.76 N 

Power transmitted due to dynamic load (PD) 

PD = 
F𝑑  × 𝑉

1000
= 5.45 kW 

Since this is more than the power to be transmitted, 

DESIGN IS SAFE. 

Check for Static Load 

Flexural Endurance limit (Fc) 

Fc = 1.75(BHN) = 1.75(255) = 446.25 

N/𝑚𝑚2 

Static load (Fs) 

Fs= Fc × b × π × m × y ′= 91595.47 N 

Power transmitted due to static load (PS) 

PS = 
F𝑠 × 𝑉

1000
= 26.56 kW 

Since this is more than the power to be transmitted, 

DESIGN IS SAFE. 

Input speed of worm (Nw) = 190 rpm 

Output speed of worm  (Ng) =
Nw

V.R
 = 

190

5
 = 38 rpm 

Pitch Line Velocity of Worm (V1) 

𝑉1=
𝜋× 𝐷1 × 𝑁1

60000
= 0.49 m/s 

Pitch Line Velocity of Worm Wheel (𝑉2) 

𝑉2= 
𝜋× 𝐷2 × 𝑁2

60000
= 0.29 m/s 

Rubbing velocity (𝑉𝑠) 

𝑉𝑠= 
𝜋× 𝐷1 × 𝑁1

60000 ×𝑐𝑜𝑠⋋
= 0.5761 m/s 

Velocity Factor (CV) 

CV = 
6

6+v
= 0.9244 

From fig. 1 of coefficient of friction v/s rubbing speed, 

we find that the coefficient of friction 

Corresponding to rubbing velocity of 0.57 m/s = 

0.051(μ) 
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Fig. 1.Coefficient of Friction.[10] 

 

 

Friction Angle (∅F) 

∅F = tan-1(μ) = 2.9195° 

Overall Efficiency of Worm and Worm Wheel (�) 

𝜂 = 
tan⋋ 

tan (⋋ + øF)
= 0.8812 = 88% 

3. 2.3. SELF-LOCKING OR OVER-RUNNING 

μ<cosψr * tan 𝜑 

Where, 

μ – Coefficient of friction between the worm and the 

gear. 

ψr - is the pressure angle of the gear train 

� - Helix angle of the worm. 

So, 

0.051 <0.07546 

Thus the system is ―self- locking‖ 

4. MATHEMATICAL MODELING 

Contact process between worm gear and worm wheel 

is comparable with the twocylinders with the same 

radius of curvature loaded in rolling contact. Based in 

such comparison, the contact between two cylinders 

produced in loading can be solved by using Hertzian 

polynomial equation, Elasticity theory &The Flamant 

generalized stress equation to determine the pressure 

distribution and to calculate the state of stresses 

beneath the contact surface. By using the state of 

stresses equations, we can calculate the maximum-

shear-stress distribution in gear tooth contact surface. 

 In this mathematical model worm and worm 

gear are considered as two sphere and stresses are 

calculated by the pressure distribution on gear and 

pinion in contact area. 
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Fig. 2.The contact phenomenon between the teeth of 

gear and pinion[12] 

 

Fig. 1 shows Pinion and gear tooth in contact 

under the action of a load P. Dashed lines show the 

original shape of the two bodies and the continuous 

lines shows their shapes under the load P. From 

Figure, the gear and pinion tooth profile radii are R2 

and R1 resp., and the strip of the contact area is 2a. 

Then, from the scheme the relative elastic 

displacements for each tooth surface can be expressed 

as 

uc1+ uc2 = 𝛿 - c1 – c2     

     

 (1) 

Where uc1 and uc2 are the displacements of 

any points over the contact surface of body A and 

body B respectively, the total body displacement and 

c1 and c2 the positions of the points over the contact 

surface. The Hertzian expressions whose plots 

approaches to each tooth circular convexities on the 

contact surface are; 

C1 = 
𝑋1

2

2𝑅1
  and   C2= 

𝑋2
2

2𝑅2
    

    (2) 

At certain point in the contact surface x1 = x2 

= x; then, substituting Equations (2) into Equation (1) 

and by making 

1

𝑅1
 + 

1

𝑅2
 = 

1

𝑅
     

     

 (3) 

it is obtained 

uc1+ uc2 = uc=  𝛿 – 
𝑋2

2𝑅
    

     (4) 

This is the displacement equation for the any 

point in the contact. Then, the variationof the contact 

surface along the x-direction can be determined by 

partial differentiation ofEquation (4) with respect to x, 

resulting in 

𝛿𝑢c

𝛿X
 = – 

𝑋

𝑅
     

    (5) 

3.1 DISPLACEMENTS PRODUCED BY THE 

PRESSURE DISTRIBUTION ON CONTACT AREA 

 
Fig. 3. Normal pressure distribution over an elastic 

half-space [12] 

The load acting on the surface at B, distance s 

of O, on an elemental area of width dscan be assumed 

as a concentrated normal force P of magnitude 

p(s)dsacting at B. The state of stresses produced by P at 

point A, are calculated using Flamant equation: 

𝜍r = – 
2𝑃

π

cos ɵ

𝑟
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This equation in rectangular coordinates become 

𝜍x= 𝜍r sen
2𝜃= – 

2𝑃

π

x2z

(x2+z2)2 

𝜍z =𝜍r cos
2𝜃= – 

2𝑃

π

Z3

(x2+z2)2   

     

 (6) 

𝜏zx = 𝜍rsen𝜃𝑐𝑜𝑠𝜃= – 
2𝑃

π

𝑥z2

(x2+z2)2 

Using Equations (6), replacing x by x s to 

relocate each point to the origin and integrating over 

the loaded region, b < s < a, we get, 

 

𝜍x = – 
2𝑍

π
 

𝑝(𝑠)(x−s)2ds

[(x−s)2+z2]2

𝑎

−𝑏
 

𝜍z = – 
2z3

π
 

𝑝(𝑠)ds

[(x−s)2+z2]2

𝑎

−𝑏
   

       (7) 

𝜍zx = – 
2z2

π
 

𝑝 𝑠 (𝑥−𝑠)ds

[(x−s)2+z2]2

𝑎

−𝑏
 

These are the basis equations to determine the 

maximum-shear-stress. 

For the displacements of points over the 

contact surface and the distortion under the load 

action, the Hook's law and the Flamant equation are 

used, which results in 

𝜕𝑢𝑟

𝜕𝑟
 = 

(1−𝑣2)

𝐸

2𝑃

𝜋

cos 𝜃

𝑟
 

1

𝑟

𝜕𝑢𝜃

𝜕𝜃
 + 

𝜕𝑢𝜃

𝜕𝑟
 - 

𝑢𝜃

𝑟
 = 

𝑇𝑟𝜃

𝐺
 = 0 

After integration, the displacements can be 

obtained (as derived by Tim-oshenko&Goodier [12]) 

[𝑢𝑟]𝜃= 
𝜋

2
 = [𝑢𝑟 ]𝜃=−

𝜋

2
 = - 

 1−2𝑣  1+𝑣 𝑃

2𝐸
  

     

         

(

8

) 

[𝑢𝜃 ]𝜃= 
𝜋

2
 = − [𝑢𝜃 ]𝜃=−

𝜋

2
 = 

(1−𝑣2)

𝜋𝐸
 2P ln 

𝑟𝜃

𝑟
 - 

(1−𝑣)

𝜋𝐸
 P 

Solving integral we find 

p(X) = - 
𝐸∗

2𝜋𝑎𝑅 (1− 𝑋2)1/2  
(1− 𝑆2)1/2

𝑋−𝑆

1

−1
S dS + 

𝑃

𝜋𝑎 (1− 𝑋2)1/2     

          (9) 

Now, in order to restrict the action of the 

pressure distribution into the loaded area we make 

p(X) = 0 at X=±1in Equation (9), in this way 

P =
𝜋𝑎2𝐸

4𝑅
      

            (10) 

Where, a =  
4𝑅𝑃

𝜋𝐸
     

          

(10.1) 

Taking into account that p(X) reaches its 

maximum value at X = 0and that p(X)= p(0)=p0, from 

Equation (9) we can get also 

P0 = 

2𝑃

𝜋𝑎
      

     

 (11) 

Finally, substituting Equations (10) and (11) 

into Equation (9) and the principal value of the 

integral, we arrive to the Hertzian pressure 

distribution 

P(x) = P0(1 − 𝑥2)1/2
    

             

(12)P(x) = P0(1 −
𝑥2

𝑎2)1/2    

     

 (13) 
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3.2. MAXIMUM-SHEAR-STRESS 

To determine the ultimate shear stress we use 

the pressure distribution expressions in the following 

way. By replacing X  bySin Equation (12) and 

substituting the result in Equation (7); afterwards, by 

replacing X by x/a and S by s/a and integrating over 

the loaded region, -1 < S <1, we get the next 

dimensionless stress equations: 

σX

p0
 = – 

2𝑍

π
 

(1−S2)1/2(x−s)2ds

[(x−s)2+z2]2

1

−1
 

σZ

p0
 = – 

2𝑧3

π
 

(1−S2)1/2ds

[(x−s)2+z2]2

1

−1
   

          (14) 

𝜏𝑍𝑋

p0
 = – 

2𝑧2

π
 

 1−S2 
1/2

 (x−s)ds

[(x−s)2+z2]2

𝑎

−𝑎
  

    (15) 

𝜏

p0
 = 

 σ1−σ2 

2
     

  (16) 

Equations (14) are the equations allowing 

determining the stresses in each point inside the gear 

tooth when the pressure distribution p(s) is applied. 

Maximum dimensionless shear stress values, τ/p0, at 

some points of the gear tooth contact surface into the 

region -1 < X <1 and 0 < Z <1:5. After applying limits it 

is clear that τ=p0 = 0.3 is the maximum dimensionless 

shear stress and it is located at Z = 0:8 beneath the gear 

tooth work surface. By applying the Tresca yield 

criterion [13], the maximum pressure to reach this 

shear stress level is: 

p0 = 

𝜏

0.3
 = 

𝜍𝑚𝑎𝑥

(2)(0.3)
 = 1.66𝜍𝑚𝑎𝑥    

     

 (17) 

whereσmaxis the maximum normal stress of material. 

Equation (17) can be rewritten in terms of load per unit 

length P using Equation (11), which results in 

𝜍𝑚𝑎𝑥  = 
2𝑃

1.66𝜋𝑎
     

     (13) 

3.3. SURFACE STRESS EQUATION WITH THE 

GEAR PARAMETERS 

Introducing the gear parameters into the 

surface stress equation we make use of the next 

relationship 

P = 
W

b
 

Where W is the total load applied and bthe 

tooth face width; then, substituting P in Equation (13), 

we have 

σX

p0
 = – 

2𝑍

π
 

(1−S2)1/2(x−s)2ds

[(x−s)2+z2]2

1

−1
   

     (14) 

On the other hand, the equivalent radius of 

tooth gear is a function of the pinion and gear tooth 

curvature radiuses. Then 

𝜌p= R1      

      

      

                                                     

(15) 

𝜌g = R2     

Where rpis the pinion pitch radius, C is the 

centre distance and Á the pressure angle. Then, 

substituting Equations (15) into Equation (3), we have, 

1

𝑅
=  

1

𝑅1
 +  

1

𝑅2
 =  

1

𝜌𝑝
 +  

1

𝜌𝑔
    

   (16) 

Finally, combining Equations (10.1), (14) and 

(16), it can be find that, 

σmax  =  
E×W

1.662πb
 

1

𝜌𝑝
 +  

1

𝜌𝑔
    

      (17) 

This is theequation called Gear Design 

Equation is used to calculate the surface stresses as 
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function of the gear parameters and the maximum 

shear stress, responsible of material failure. In gear 

manufacturing this max.stress must always be smaller 

than the material yield stress σy. 

σmax <𝜍y      

    (18) 

5. CONCLUSION 

The performed investigation allows making the 
following conclusion: 

Design of worm and worm gear pair for plug valve 
application is developed. 

Also, Gear design equation for calculating the 
surface stress for gear and maximum shear-stress, 
which is respogsiblefor the gear material failure is 
developed  
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